Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Front Chem ; 12: 1382512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633987

RESUMO

Introduction: The significance of automated drug design using virtual generative models has steadily grown in recent years. While deep learning-driven solutions have received growing attention, only a few modern AI-assisted generative chemistry platforms have demonstrated the ability to produce valuable structures. At the same time, virtual fragment-based drug design, which was previously less popular due to the high computational costs, has become more attractive with the development of new chemoinformatic techniques and powerful computing technologies. Methods: We developed Quantum-assisted Fragment-based Automated Structure Generator (QFASG), a fully automated algorithm designed to construct ligands for a target protein using a library of molecular fragments. QFASG was applied to generating new structures of CAMKK2 and ATM inhibitors. Results: New low-micromolar inhibitors of CAMKK2 and ATM were designed using the algorithm. Discussion: These findings highlight the algorithm's potential in designing primary hits for further optimization and showcase the capabilities of QFASG as an effective tool in this field.

2.
Eur J Med Chem ; 270: 116390, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604096

RESUMO

Protein tyrosine phosphatases PTPN2 and PTPN1 (also known as PTP1B) have been implicated in a number of intracellular signaling pathways of immune cells. The inhibition of PTPN2 and PTPN1 has emerged as an attractive approach to sensitize T cell anti-tumor immunity. Two small molecule inhibitors have been entered the clinic. Here we report the design and development of compound 4, a novel small molecule PTPN2/N1 inhibitor demonstrating nanomolar inhibitory potency, good in vivo oral bioavailability, and robust in vivo antitumor efficacy.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
3.
Exp Gerontol ; 190: 112421, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38588752

RESUMO

BACKGROUND: Accelerated biological ageing is a major underlying mechanism of frailty development. This study aimed to investigate if the biological age measured by a blood biochemistry-based ageing clock is associated with frailty in geriatric rehabilitation inpatients. METHODS: Within the REStORing health of acutely unwell adulTs (RESORT) cohort, patients' biological age was measured by an ageing clock based on completed data of 30 routine blood test variables measured at rehabilitation admission. The delta of biological age minus chronological age (years) was calculated. Ordinal logistic regression and multinomial logistic regression were performed to evaluate the association of the delta of ages with frailty assessed by the Clinical Frailty Scale. Effect modification of Cumulative Illness Rating Scale (CIRS) score was tested. RESULTS: A total of 1187 geriatric rehabilitation patients were included (median age: 83.4 years, IQR: 77.7-88.5; 57.4 % female). The biochemistry-based biological age was strongly correlated with chronological age (Spearman r = 0.883). After adjustment for age, sex and primary reasons for acute admission, higher biological age (per 1 year higher in delta of ages) was associated with more severe frailty at admission (OR: 1.053, 95 % CI:1.012-1.096) in patients who had a CIRS score of <12 not in patients with a CIRS score >12. The delta of ages was not associated with frailty change from admission to discharge. The specific frailty manifestations as cardiac, hematological, respiratory, renal, and endocrine conditions were associated with higher biological age. CONCLUSION: Higher biological age was associated with severe frailty in geriatric rehabilitation inpatients with less comorbidity burden.

4.
Nat Biotechnol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459338

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.

5.
Bioorg Med Chem ; 103: 117662, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493730

RESUMO

Inhibition of the low fidelity DNA polymerase Theta (Polθ) is emerging as an attractive, synthetic-lethal antitumor strategy in BRCA-deficient tumors. Here we report the AI-enabled development of 3-hydroxymethyl-azetidine derivatives as a novel class of Polθ inhibitors featuring central scaffolding rings. Structure-based drug design first identified A7 as a lead compound, which was further optimized to the more potent derivative B3 and the metabolically stable deuterated compound C1. C1 exhibited significant antiproliferative properties in DNA repair-compromised cells and demonstrated favorable pharmacokinetics, showcasing that 3-hydroxymethyl-azetidine is an effective bio-isostere of pyrrolidin-3-ol and emphasizing the potential of AI in medicinal chemistry for precise molecular modifications.


Assuntos
Azetidinas , Neoplasias , Humanos , Reparo do DNA , Azetidinas/química
6.
Bioorg Chem ; 146: 107285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547721

RESUMO

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Assuntos
Quinases Ciclina-Dependentes , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade , Quinase 2 Dependente de Ciclina/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Descoberta de Drogas
7.
Aging (Albany NY) ; 16(3): 2026-2046, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345566

RESUMO

Progeroid disorders are a heterogenous group of rare and complex hereditary syndromes presenting with pleiotropic phenotypes associated with normal aging. Due to the large variation in clinical presentation the diseases pose a diagnostic challenge for clinicians which consequently restricts medical research. To accommodate the challenge, we compiled a list of known progeroid syndromes and calculated the mean prevalence of their associated phenotypes, defining what we term the 'progeria phenome'. The data were used to train a support vector machine that is available at https://www.mitodb.com and able to classify progerias based on phenotypes. Furthermore, this allowed us to investigate the correlation of progeroid syndromes and syndromes with various pathogenesis using hierarchical clustering algorithms and disease networks. We detected that ataxia-telangiectasia like disorder 2, spastic paraplegia 49 and Meier-Gorlin syndrome display strong association to progeroid syndromes, thereby implying that the syndromes are previously unrecognized progerias. In conclusion, our study has provided tools to evaluate the likelihood of a syndrome or patient being progeroid. This is a considerable step forward in our understanding of what constitutes a premature aging disorder and how to diagnose them.


Assuntos
Senilidade Prematura , Síndrome de Cockayne , Progéria , Humanos , Progéria/genética , Progéria/patologia , Senilidade Prematura/genética , Envelhecimento , Fenótipo , Transtornos do Crescimento/complicações
8.
Skin Res Technol ; 30(3): e13613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419420

RESUMO

BACKGROUND: Recent advancements in artificial intelligence have revolutionized dermatological diagnostics. These technologies, particularly machine learning (ML), including deep learning (DL), have shown accuracy equivalent or even superior to human experts in diagnosing skin conditions like melanoma. With the integration of ML, including DL, the development of at home skin analysis devices has become feasible. To this end, we introduced the Skinly system, a handheld device capable of evaluating various personal skin characteristics noninvasively. MATERIALS AND METHODS: Equipped with a moisture sensor and a multi-light-source camera, Skinly can assess age-related skin parameters and specific skin properties. Utilizing state-of-the-art DL, Skinly processed vast amounts of images efficiently. The Skinly system's efficacy was validated both in the lab and at home, comparing its results to established "gold standard" methods. RESULTS: Our findings revealed that the Skinly device can accurately measure age-associated parameters, that is, facial age, skin evenness, and wrinkles. Furthermore, Skinly produced data consistent with established devices for parameters like glossiness, skin tone, redness, and porphyrin levels. A separate study was conducted to evaluate the effects of two moisturizing formulations on skin hydration in laboratory studies with standard instrumentation and at home with Skinly. CONCLUSION: Thanks to its capability for multi-parameter measurements, the Skinly device, combined with its smartphone application, holds the potential to replace more expensive, time-consuming diagnostic tools. Collectively, the Skinly device opens new avenues in dermatological research, offering a reliable, versatile tool for comprehensive skin analysis.


Assuntos
Melanoma , Aplicativos Móveis , Neoplasias Cutâneas , Humanos , Inteligência Artificial , Pele/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico
9.
J Chem Inf Model ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38404138

RESUMO

PandaOmics is a cloud-based software platform that applies artificial intelligence and bioinformatics techniques to multimodal omics and biomedical text data for therapeutic target and biomarker discovery. PandaOmics generates novel and repurposed therapeutic target and biomarker hypotheses with the desired properties and is available through licensing or collaboration. Targets and biomarkers generated by the platform were previously validated in both in vitro and in vivo studies. PandaOmics is a core component of Insilico Medicine's Pharma.ai drug discovery suite, which also includes Chemistry42 for the de novo generation of novel small molecules, and inClinico─a data-driven multimodal platform that forecasts a clinical trial's probability of successful transition from phase 2 to phase 3. In this paper, we demonstrate how the PandaOmics platform can efficiently identify novel molecular targets and biomarkers for various diseases.

10.
Nat Med ; 30(2): 360-372, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355974

RESUMO

The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.


Assuntos
Longevidade , Projetos de Pesquisa , Biomarcadores , Consenso
11.
Bioorg Med Chem ; 100: 117633, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342078

RESUMO

The methionine adenosyltransferase MAT2A catalyzes the synthesis ofthe methyl donor S-adenosylmethionine (SAM) and thereby regulates critical aspects of metabolism and transcription. Aberrant MAT2A function can lead to metabolic and transcriptional reprogramming of cancer cells, and MAT2A has been shown to promote survival of MTAP-deficient tumors, a genetic alteration that occurs in âˆ¼ 13 % of all tumors. Thus, MAT2A holds great promise as a novel anticancer target. Here, we report a novel series of MAT2A inhibitors generated by a fragment growing approach from AZ-28, a low-molecular weight MAT2A inhibitor with promising pre-clinical properties. X-ray co-crystal structure revealed that compound 7 fully occupies the allosteric pocket of MAT2A as a single molecule mimicking MAT2B. By introducing additional backbone interactions and rigidifying the requisite linker extensions, we generated compound 8, which exhibited single digit nanomolar enzymatic and sub-micromolar cellular inhibitory potency for MAT2A.


Assuntos
Metionina Adenosiltransferase , Neoplasias , Humanos , Sítio Alostérico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/metabolismo , Mutação , S-Adenosilmetionina/metabolismo
12.
J Med Chem ; 67(2): 1393-1405, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38189253

RESUMO

Stabilization of hypoxia-inducible factor (HIF) by inhibiting prolyl hydroxylase domain enzymes (PHDs) represents a breakthrough in treating anemia associated with chronic kidney disease. Here, we identified a novel scaffold for noncarboxylic PHD inhibitors by utilizing structure-based drug design (SBDD) and generative models. Iterative optimization of potency and solubility resulted in compound 15 which potently inhibits PHD thus stabilizing HIF-α in vitro. X-ray cocrystal structure confirmed the binding model was distinct from previously reported carboxylic acid PHD inhibitors by pushing away the R383 and Y303 residues resulting in a larger inner subpocket. Furthermore, compound 15 demonstrated a favorable in vitro/in vivo absorption, distribution, metabolism, and excretion (ADME) profile, low drug-drug interaction risk, and clean early safety profiling. Functionally, oral administration of compound 15 at 10 mg/kg every day (QD) mitigated anemia in a 5/6 nephrectomy rat disease model.


Assuntos
Anemia , Inibidores de Prolil-Hidrolase , Insuficiência Renal Crônica , Ratos , Animais , Prolil Hidroxilases , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Anemia/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Administração Oral , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia
13.
J Med Chem ; 67(1): 420-432, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38146659

RESUMO

Breast and gynecological cancers are among the leading causes of death in women worldwide, illustrating the urgent need for innovative treatment options. We identified MYT1 as a promising new therapeutic target for breast and gynecological cancer using PandaOmics, an AI-driven target discovery platform. The synthetic lethal relationship of MYT1 in tumor cell lines with CCNE1 amplification enhanced this rationale. Through structure-based drug design, we developed a series of novel, potent, and highly selective inhibitors specifically targeting MYT1. Importantly, our lead compound, featuring a tetrahydropyrazolopyrazine ring, exhibits remarkable selectivity over WEE1, a related kinase associated with bone marrow suppression upon inhibition. Optimization of potency and physical properties resulted in the discovery of compound 21, a novel MYT1 inhibitor, exhibiting optimal pharmacokinetic properties and promising in vivo antitumor efficacy.


Assuntos
Antineoplásicos , Neoplasias , Feminino , Humanos , Linhagem Celular Tumoral , Mama , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Neoplasias/tratamento farmacológico , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
15.
Aging Cell ; 22(12): e14017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888486

RESUMO

As aging and tumorigenesis are tightly interconnected biological processes, targeting their common underlying driving pathways may induce dual-purpose anti-aging and anti-cancer effects. Our transcriptomic analyses of 16,740 healthy samples demonstrated tissue-specific age-associated gene expression, with most tumor suppressor genes downregulated during aging. Furthermore, a large-scale pan-cancer analysis of 11 solid tumor types (11,303 cases and 4431 control samples) revealed that many cellular processes, such as protein localization, DNA replication, DNA repair, cell cycle, and RNA metabolism, were upregulated in cancer but downregulated in healthy aging tissues, whereas pathways regulating cellular senescence were upregulated in both aging and cancer. Common cancer targets were identified by the AI-driven target discovery platform-PandaOmics. Age-associated cancer targets were selected and further classified into four groups based on their reported roles in lifespan. Among the 51 identified age-associated cancer targets with anti-aging experimental evidence, 22 were proposed as dual-purpose targets for anti-aging and anti-cancer treatment with the same therapeutic direction. Among age-associated cancer targets without known lifespan-regulating activity, 23 genes were selected based on predicted dual-purpose properties. Knockdown of histone demethylase KDM1A, one of these unexplored candidates, significantly extended lifespan in Caenorhabditis elegans. Given KDM1A's anti-cancer activities reported in both preclinical and clinical studies, our findings propose KDM1A as a promising dual-purpose target. This is the first study utilizing an innovative AI-driven approach to identify dual-purpose target candidates for anti-aging and anti-cancer treatment, supporting the value of AI-assisted target identification for drug discovery.


Assuntos
Proteínas de Caenorhabditis elegans , Neoplasias , Animais , Humanos , Envelhecimento/genética , Longevidade/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inteligência Artificial , Histona Desmetilases/metabolismo
16.
Aging (Albany NY) ; 15(18): 9293-9309, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37742294

RESUMO

Target discovery is crucial for the development of innovative therapeutics and diagnostics. However, current approaches often face limitations in efficiency, specificity, and scalability, necessitating the exploration of novel strategies for identifying and validating disease-relevant targets. Advances in natural language processing have provided new avenues for predicting potential therapeutic targets for various diseases. Here, we present a novel approach for predicting therapeutic targets using a large language model (LLM). We trained a domain-specific BioGPT model on a large corpus of biomedical literature consisting of grant text and developed a pipeline for generating target prediction. Our study demonstrates that pre-training of the LLM model with task-specific texts improves its performance. Applying the developed pipeline, we retrieved prospective aging and age-related disease targets and showed that these proteins are in correspondence with the database data. Moreover, we propose CCR5 and PTH as potential novel dual-purpose anti-aging and disease targets which were not previously identified as age-related but were highly ranked in our approach. Overall, our work highlights the high potential of transformer models in novel target prediction and provides a roadmap for future integration of AI approaches for addressing the intricate challenges presented in the biomedical field.


Assuntos
Idioma , Estudos Prospectivos , Bases de Dados Factuais
17.
Proc Natl Acad Sci U S A ; 120(40): e2300215120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37774095

RESUMO

The phenomenon of protein phase separation (PPS) underlies a wide range of cellular functions. Correspondingly, the dysregulation of the PPS process has been associated with numerous human diseases. To enable therapeutic interventions based on the regulation of this association, possible targets should be identified. For this purpose, we present an approach that combines the multiomic PandaOmics platform with the FuzDrop method to identify PPS-prone disease-associated proteins. Using this approach, we prioritize candidates with high PandaOmics and FuzDrop scores using a profiling method that accounts for a wide range of parameters relevant for disease mechanism and pharmacological intervention. We validate the differential phase separation behaviors of three predicted Alzheimer's disease targets (MARCKS, CAMKK2, and p62) in two cell models of this disease. Overall, the approach that we present generates a list of possible therapeutic targets for human diseases associated with the dysregulation of the PPS process.


Assuntos
Doença de Alzheimer , Multiômica , Humanos , Proteínas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina
18.
Cell ; 186(18): 3758-3775, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657418

RESUMO

With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.


Assuntos
Envelhecimento , Longevidade , Humanos , Biomarcadores
19.
ACS Med Chem Lett ; 14(7): 901-915, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465301

RESUMO

This microperspective covers the most recent research outcomes of artificial intelligence (AI) generated molecular structures from the point of view of the medicinal chemist. The main focus is on studies that include synthesis and experimental in vitro validation in biochemical assays of the generated molecular structures, where we analyze the reported structures' relevance in modern medicinal chemistry and their novelty. The authors believe that this review would be appreciated by medicinal chemistry and AI-driven drug design (AIDD) communities and can be adopted as a comprehensive approach for qualifying different research outcomes in AIDD.

20.
Clin Pharmacol Ther ; 114(5): 972-980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37483175

RESUMO

Drug discovery and development is a notoriously risky process with high failure rates at every stage, including disease modeling, target discovery, hit discovery, lead optimization, preclinical development, human safety, and efficacy studies. Accurate prediction of clinical trial outcomes may help significantly improve the efficiency of this process by prioritizing therapeutic programs that are more likely to succeed in clinical trials and ultimately benefit patients. Here, we describe inClinico, a transformer-based artificial intelligence software platform designed to predict the outcome of phase II clinical trials. The platform combines an ensemble of clinical trial outcome prediction engines that leverage generative artificial intelligence and multimodal data, including omics, text, clinical trial design, and small molecule properties. inClinico was validated in retrospective, quasi-prospective, and prospective validation studies internally and with pharmaceutical companies and financial institutions. The platform achieved 0.88 receiver operating characteristic area under the curve in predicting the phase II to phase III transition on a quasi-prospective validation dataset. The first prospective predictions were made and placed on date-stamped preprint servers in 2016. To validate our model in a real-world setting, we published forecasted outcomes for several phase II clinical trials achieving 79% accuracy for the trials that have read out. We also present an investment application of inClinico using date stamped virtual trading portfolio demonstrating 35% 9-month return on investment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...